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a b s t r a c t 

In an emergency room (ER) setting, stroke triage or screening is a common challenge. A quick CT is 

usually done instead of MRI due to MRI’s slow throughput and high cost. Clinical tests are commonly 

referred to during the process, but the misdiagnosis rate remains high. We propose a novel multimodal 

deep learning framework, DeepStroke , to achieve computer-aided stroke presence assessment by recog- 

nizing patterns of minor facial muscles incoordination and speech inability for patients with suspicion 

of stroke in an acute setting. Our proposed DeepStroke takes one-minute facial video data and audio 

data readily available during stroke triage for local facial paralysis detection and global speech disor- 

der analysis. Transfer learning was adopted to reduce face-attribute biases and improve generalizability. 

We leverage a multi-modal lateral fusion to combine the low- and high-level features and provide mu- 

tual regularization for joint training. Novel adversarial training is introduced to obtain identity-free and 

stroke-discriminative features. Experiments on our video-audio dataset with actual ER patients show that 

DeepStroke outperforms state-of-the-art models and achieves better performance than both a triage team 

and ER doctors, attaining a 10.94% higher sensitivity and maintaining 7.37% higher accuracy than tradi- 

tional stroke triage when specificity is aligned. Meanwhile, each assessment can be completed in less 

than six minutes, demonstrating the framework’s great potential for clinical translation. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Stroke is a common cerebrovascular disease that can cause last- 

ng brain damage, long-term disability, or even death ( Centers for 

isease Control and Prevention, 2005 ). It is the second leading 

ause of death and the third leading cause of disability world- 

ide ( Johnson et al., 2016 ). According to the Centers for Disease 

ontrol and Prevention (2020) , someone in the United States has a 

troke every forty seconds and someone dies of a stroke every four 

inutes. In acute ischemic stroke where brain tissue lacks blood 

upply, the shortage of oxygen needed for cellular metabolism 

uickly causes long-lasting tissue damage. If identified and treated 

n time, many interventions are available and an acute ischemic 
∗ Corresponding authors. 
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troke patient will have a greater chance of survival and subse- 

uently a better quality of life. 

However, treatment delays related to misdiagnosis and under- 

iagnosis are common during triage ( Rafay et al., 2009 ). A major 

roblem in acute ischemic stroke is misdiagnosis. Misdiagnosis in 

troke leads to undertreatment, overtreatment, and the potential 

or mental and physical disability ( Crichton et al., 2016 ). Approx- 

mately 22% of all ischemic stroke patients are missed during the 

re-hospital triage screening, and the problem is more severe in 

ommunity hospitals than in academic hospitals ( Arch et al., 2016 ). 

Rapid diagnosis of acute ischemic stroke relies on clinical diag- 

osis and imaging as there is no point-of-care test available. Cur- 

ently, the gold standard test for stroke is advanced neuro-imaging 

ncluding diffusion-weighted MRI scan (DWI) that detects brain in- 

arct with high sensitivity and specificity. Although accurate, DWI 

s usually not accessible in the emergency room (ER) due to limited 

quipment availability and high operating cost. Even in advanced 

enters with ER availability of MRI, the turnaround time for patient 

ransport, testing, and results adds 30–60 minutes, which is too in- 

https://doi.org/10.1016/j.media.2022.102522
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102522&domain=pdf
mailto:cta@psu.edu
mailto:jwang@psu.edu
mailto:stwong@houstonmethodist.org
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fficient for the stroke triage screening process. The healthcare sys- 

em, instead, relies on rapid imaging such as CT and clinical judg- 

ent of nurses and physicians to detect neurological symptoms 

uring emergency triage. In the actual ER scenario, clinicians com- 

only adopt the following three tests: the Cincinnati Pre-hospital 

troke Scale (CPSS) ( Kothari et al., 1999 ), the Face Arm Speech Test

FAST) ( Harbison et al., 2003 ), and the National Institutes of Health 

troke Scale (NIHSS) ( NIH, 2003 ). All these methods assess the 

resence of any unilateral facial droop, arm drift, and speech dis- 

rder. The patient is requested to repeat a specific sentence (CPSS) 

r have a conversation with the doctor (FAST), and abnormalities 

rise when the patient slurs, fails to organize his speech, or is un- 

ble to speak. For NIHSS, face and limb palsy conditions are also 

valuated. However, the scarcity of neurologists ( Leira et al., 2013 ) 

akes such tests difficult to be timely and effectively conducted 

n all stroke emergencies. The evaluation may also fail to detect 

troke cases where only very subtle facial motion deficits exist—

hat clinicians are unable to observe. 

Recently, with the help of machine intelligence, researchers 

ave proposed more and more accurate detection and evaluation 

ethods for neurological disorders. Besides working on computer- 

ided medical image understanding for CT and MRI images ( Xue 

t al., 2018; Yao et al., 2018; Akkus et al., 2017 ), many researchers

re now focusing on alternative contactless, efficient, and eco- 

omic ways for the analysis of various neurological conditions. One 

f the most popular domains is the detection of facial paralysis 

ith computer vision, i.e. , letting machines detect the anomalies 

n the subject’s face. However, the clinical scenario is always over- 

ooked where obvious stroke patients are readily identified without 

reatment delay and subtle/non-obvious strokes are easily missed. 

bvious strokes can be identified by key-point methods ( Parra- 

ominguez et al., 2021; Zhuang et al., 2021 ) but the same strategy 

ill not be effective on subtle strokes. 

Moreover, the majority of work neglects the readily avail- 

ble and indicative speech audio features ( Thevenot et al., 2017 ), 

hich can be an important source of information in stroke di- 

gnosis. Also, current methods ignore the spatiotemporal conti- 

uity of facial motions ( He et al., 2008; Hakata et al., 2013; 

lores-Mondragón et al., 2015 ) and fail to tackle the prob- 

em of static/natural asymmetry. Common video classification 

rameworks like I3D ( Carreira and Zisserman, 2017 ) and Slow- 

ast ( Feichtenhofer et al., 2019 ) also fail to serve the stroke pat-

ern recognition purpose due to the lack of training data and quick 

verfitting as “subject-remembering” effect. 

Worse still, few datasets of high quality have been constructed 

n the stroke diagnosis domain. The current clinical datasets 

 Perveen, 2019; Kihara et al., 2011; Hsu et al., 2018; Greene et al., 

020 ) are small (with hundreds of images or dozens of videos) 

nd unable to comprehensively represent the diversity in stroke 

atients in terms of gender, race/ethnicity, and age. Also, they ei- 

her evaluate normal subjects versus those with clear signs of a 

troke ( Bandini et al., 2016; Ngo et al., 2016 ) or deal with full syn-

hetic data ( i.e. , healthy people pretend to have palsy facial pat- 

erns) ( Zhuang et al., 2018; Storey and Jiang, 2018 ); some oth- 

rs establish experimental settings with hard constraints on the 

atient’s head ( Bevilacqua et al., 2011; Hamm et al., 2011; Wang 

t al., 2014 ). All these shortcomings will hinder their clinical im- 

lementation for ER screening or patient self-assessment. 

In this paper, we propose a novel deep learning framework, 

amed DeepStroke , to assist the stroke triage team in accurately 

nd efficiently analyzing the presence of stroke in patients admit- 

ed to the Emergency Rooms (ER) with a subtle sign of stroke. 

he problem is formulated as a binary classification task, i.e. , 

troke vs. non-stroke. Instead of taking a single-modality input, 

he core network in DeepStroke consists of two temporal-aware 

ranches, the video branch for local facial motion analysis and 
2

he audio branch for global vocal speech analysis, to collabora- 

ively detect the presence of stroke patterns. A novel lateral fusion 

cheme between these two branches is introduced to combine the 

ow- and high-level features and provide mutual regularization for 

oint training. To mitigate the “subject-remembering” effect, Deep- 

troke also adopts adversarial learning to extract identity-free and 

troke-discriminative features, as well as transfer learning to re- 

uce facial-attribute biases and improve the network generalizabil- 

ty. 

To better illustrate the use case of our proposed method, we 

lot the anticipated clinical workflow of DeepStroke in helping 

troke diagnosis in ER, as shown in Fig. 1 . If the incoming patient

as a clear indication of a stroke, he/she should be directly trans- 

erred to the stroke team for evaluation and treatment. For non- 

bvious cases, DeepStroke will be applied for the reference of the 

riage team and ER doctors to reduce misdiagnosis. 

To evaluate DeepStroke , we construct a stroke patient 

ideo/audio dataset that records the facial motions of the pa- 

ients during their process of performing a set of vocal speech 

ests when they visit the ER. The recruited participants are all 

howing some level of neurological conditions with suspicion of 

troke when visiting the ER. This is closer to the real ER scenarios 

nd much more challenging than distinguishing stroke patients 

rom healthy people. Our dataset includes diverse patients of 

ifferent genders, races/ethnicity, ages, and at different levels 

f stroke conditions; the subjects are free of motion constraints 

nd are in arbitrary body positions, illumination conditions, and 

ackground scenarios, which can be regarded as “in-the-wild.”

xperiments on our dataset show that the DeepStroke frame- 

ork achieves higher performance than the typical stroke triage 

eam and even outperform trained ER clinicians for stroke (who 

as more clinical information available) while maintaining a 

anageable computation workload. 

A preliminary version of this work was presented in our earlier 

ublication ( Yu et al., 2020 ). In this paper, we substantially extend 

ur prior work in the following aspects. First, we substitute the 

ext transcript inputs with the spectrogram input and replace the 

ext LSTM with ResNet-18 to maintain the most of speech infor- 

ation, reduce errors induced by the transcription process as well 

s ease the later feature fusion with video module. Secondly, we 

ntroduce a lateral connection to the two branches to resolve the 

nstable convergence of the network caused by different training 

ynamics of branches and share low-/high-level features for a bet- 

er combination of the global context (audio) and local represen- 

ation (video). Thirdly, we adopt a transfer learning pipeline and 

ntroduce state-of-the-art fairness-aware face image pre-training 

nd image classification pre-training to reduce facial feature biases, 

itigate network overfitting and improve network generalizability. 

ourthly, we introduce an adversarial training scheme aiming to 

emove the subject identity features from the input to alleviate the 

subject-remembering” effect of the deep neural networks. Lastly, 

e significantly enlarge the dataset with newly collected data to 

upport extensive new cross-validation experiments and hold-out 

tudy on our proposed new framework. 

The main contributions of this work are summarized below. 

1. We constructed a real ER patient facial video and vocal au- 

dio dataset for stroke screening with diverse participants. The 

videos are collected “in the wild,” with unconstrained patient 

body positions, environment illumination conditions, or back- 

ground scenarios. 

2. We propose a deep-learning multimodal framework, Deep- 

Stroke , that highlights its video-audio multi-level feature fusion 

scheme that combines global context to local representation, 

the adversarial training that extracts identity-free stroke fea- 

tures, the transfer learning that improves generalizability, and 
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Fig. 1. The anticipated workflow of DeepStroke in assisting stroke diagnosis in the ERs. 
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the spatiotemporal proposal mechanism for frontal human fa- 

cial motion sequences. 

3. The proposed multi-modal method achieves high diagnostic 

performance and efficiency on our proposed challenging dataset 

and outperforms the clinicians, demonstrating its high clinical 

value to be deployed for real ER use. 

. Related work 

.1. Facial motion analysis for medical diagnosis 

In the past two decades, researchers have been striving for 

ore and more novel facial motion analysis methods to achieve 

ccurate detection and evaluation of facial paralysis and other 

edical conditions. Early work focused on static image anal- 

sis. Rogers et al. (2007) aimed to detect the improvement 

n abnormal facial movements after treatment with botulinum 

oxin A; Dong et al. (2008) introduced a “face nerve index”

ased on coordinates of image feature points and achieved 

n accurate classification of facial paralysis levels. Some oth- 

rs utilized multiple images in a sequence for improved anal- 

sis, e.g. , He et al. (2007) and Green and Guan (2004) . With

ideo data, researchers can capture between-frame motions of 

atient faces and temporal patterns in facial abnormalities. 

or example, Frey et al. (2008) analyzed the video trajecto- 

ies of facial regions for face paralysis detection and evalua- 

ion; Bandini et al. (2017) extracted articulatory movements of 

atient faces in a video to identify patterns of Parkinson’s dis- 

ase. A small video dataset for facial paralysis has been offered 

y Greene et al. (2020) along with the eFACE ( Banks et al., 

015 ), House-Brackmann ( House and Brackmann, 1985 ), and Sun- 

ybrook ( Ross et al., 1996 ) metrics. There is not a publicly-available

mage or video database specifically for the evaluation of stroke 

ithin a patient due to the concern of personal identity leakage 

nd IRB constraints; if no real patient case is available, synthetic 

atasets like CK+ ( Lucey et al., 2010 ) have to be used, where only

ealthy participants are involved. Biases in genders, ages, and races 

ill arise as the majority of the prior datasets only have a limited 

umber of subjects. 

With recent developments in computer vision and especially 

ace alignment, the facial landmark is becoming a popular repre- 

entation of facial patterns. Anping et al. (2017) measured asym- 

etry for facial movement images based on facial landmarks; 

huang et al. (2018) and Szczapa et al. (2019) also introduced 

imilar facial landmark-based methods on video or image data. 
3 
ang et al. (2016) and Zhuang et al. (2019) stratified the face of a 

atient into multiple regions and considered regional information 

ith landmarks. While easy to obtain, the landmarks are not ro- 

ust and suffer greatly from illumination, occlusion, and motion. 

ome more recent work designs deep learning methods for the 

ask. Song et al. (2018) developed an Inception-DeepID-FNP neural 

etwork for paralysis classification, Storey and Jiang (2018) con- 

idered a multi-task network for both face detection and facial 

symmetry evaluation, and Guo et al. (2017) introduced a deep 

earning framework to classify facial paralysis with regard to the 

-B standard. However, all these deep learning frameworks suffer 

rom non-standard head poses or non-facial motions. To address 

he alignment issues, the majority of the prior work sets up exper- 

mental settings with uniform illuminations and puts up hard con- 

traints on the subjects’ heads to avoid alignment issues. Such sim- 

lification of scenarios greatly hinders the clinical value of these 

roposed methods, especially in an emergency setting. 

Upon reviewing the above literature, we concluded that existing 

pproaches either evaluate their methods between subjects that 

re normal versus those with clear signs of a stroke, deal with only 

ynthetic data, fail in capturing the spatiotemporal details of facial 

uscular motions, or rely on experimental settings with hard con- 

traints. Without considering challenges in real emergencies such 

s illumination variations, pose changes, skin color, and subtleties 

f patterns, such methods are not practical in real clinical practice 

r for patient self-assessment. 

.2. Disentangle representation learning 

Our work is also closely related to disentangle representation 

earning. Tran et al. (2017) developed DR-GAN to learn a gen- 

rative and discriminative representation for pose-invariant face 

ecognition. Liu et al. (2018) proposed the D 

2 AE framework to ad- 

ersarially learn the identity-free features for identity verification 

nd the identity-dispelled features to fool the verification system. 

hang et al. (2019) proposed an AutoEncoder framework to explic- 

tly disentangle pose and appearance features from RGB imagery 

nd the LSTM-based integration of pose features over time pro- 

uces the gait feature. Lu et al. (2019) developed an unsupervised 

omain-specific image deblurring framework by disentangling the 

ontent and blur features. Lee et al. (2018) proposed an image-to- 

mage translation framework by disentangling image features into 

 domain-invariant content space and a domain-specific attribute 

pace and combining them to produce diverse output. 
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Fig. 2. The speech task and the sample recording protocol. 
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1 This study is conducted under Houston Methodist IRB protocol No. 

Pro0 0 020577, Penn State IRB site No. SITE0 0 0 0 0562. 
Especially, learning identity-free stroke patterns for diagno- 

is is a similar process to extracting identity-free features for 

acial expression recognition (FER), which also aims to de- 

ect patterns of facial movements. Meng et al. (2017) designed 

dentity-contrasting loss that goes in parallel with the expression- 

elated loss to achieve identity-invariant expression recognition. 

ai et al. (2019) proposed a conditional generative model to trans- 

orm an average neutral face into an average expressive face with 

he same expression as the input image that is naturally identity- 

ree. Wang et al. (2019) constructed a pose discriminator and a 

ubject discriminator to classify the pose and the subject from the 

xtracted feature representations, respectively, to make them ro- 

ust to poses and subjects. In this work, we adopt a similar ap- 

roach and set up identity-related discriminators, and use an ad- 

ersarial training scheme to extract identity-free features. To our 

nowledge, our work is the first attempt that introduces adversar- 

al training loss to stroke diagnosis tasks. 

.3. Multimodal deep learning 

Deep networks that learn features over multiple modalities via 

hared representation learning ( Ngiam et al., 2011 ) have achieved 

utstanding performance on various multimedia tasks. Intuitively, 

hen more than one form of data is available, a deep network 

hat utilizes most of them and takes aligned information from dif- 

erent sources, where each modality tends to complement each 

ther and incorporate richer information, will usually result in 

igher task performance than using these information sources in- 

ividually. The idea of multimodal deep learning has been mak- 

ng great improvements to domains including emotion recogni- 

ion ( Kahou et al., 2016 ), disease diagnosis ( Xu et al., 2016 ), object

etection ( Eitel et al., 2015 ), etc. Common modalities include text, 

udio, and video, and they complement each other within a multi- 

odal neural network. 

Specifically for disease diagnosis, multimodal methods have 

een proven useful to integrate patient data from multiple plat- 

orms or in different forms. Li and Shen (2018) proposed a multi- 

iew deep learning framework (MvNet) with three branches to 

egment multimodal brain images from different view-points, i.e. 

lices along x-, y-, z-axes; Menegotto et al. (2020) developed a 

ultimodal deep machine learning architecture for hepatocarci- 

oma diagnosis with computed tomography images, laboratory test 

esults, anthropometric and sociodemographic data as input; to 

odel the difficulties to start or to stop movements for patients 

ith Parkinson’s disease, Vásquez-Correa et al. (2019) conducted 

ultimodal deep learning over information from speech, handwrit- 

ng, and gait; Liang et al. (2015) proposed multimodal deep belief 

etwork (DBN) to cluster cancer patients observation data from 

ifferent platforms. The fusion of medical imaging and electronic 

ealth records using deep learning has been another heated topic 

n recent years ( Huang et al., 2020 ), which will make pixel-based 

odels and contextual data from electronic health records (EHR) 

ork cooperatively for the diagnostic purpose. 

Stroke diagnosis can also benefit from multimodal deep learn- 

ng. To diagnose a stroke case, neurologists detect the facial deficits 

n the patient’s face or the disorder in speech—the two modalities 

end to work jointly. In this work, we adopt the multimodal idea 

o allow the facial video and vocal audio to work together for a 

nal diagnosis. 

. Dataset 

The clinical dataset for this study was acquired in the ERs of the 

ouston Methodist Hospital in Texas by the physicians and care- 

ivers from the Eddy Scurlock Stroke Center at the Hospital under 
4 
n IRB-approved study. 1 It has taken more than a year for us to re- 

ruit a large pool of patients in various stroke-related emergencies, 

nd the cohort is still expanding. The subjects enrolled are patients 

ith suspicion of stroke while visiting the ER while obvious stroke 

ases with severe symptoms are excluded. To help preserve the pa- 

ients’ personal information, we only transmitted limited informa- 

ion that we think is sufficient for this study between institutes to 

void any identifiable information to be collected and dispensed. 

he patients are only assessed when they’re in a relatively stable 

ondition so the collection of data will not impose extra risk on 

igh-emergency cases. Note that the gender ratio of our dataset is 

elatively balanced without intervention, and the race/ethnicity or 

ge distributions are not manually controlled, which would roughly 

epresent the real distribution of the incoming ER patients. Poten- 

ial bias will be discussed in Section 5 . 

Clinically, the ability of speech is an important and efficient in- 

icator of the presence of stroke and is the preferable measure- 

ent doctors will use to make initial clinical impressions; if a po- 

ential patient slurs, mumbles, or even fails to speak, he or she will 

ave a very high chance of stroke ( Harbison et al., 2003; Kothari 

t al., 1999 ). During the evaluation and recording stage, we fol- 

ow the NIH Stroke Scale (2003) ) and perform the following speech 

asks on each subject: (1) We ask the patient to repeat the sen- 

ence “it is nice to see people from my hometown,” and (2) we 

sk the patient to describe the “Cookie Theft” picture as shown in 

ig. 2 a. 

The “Cookie Theft” task requires the subject to retrieve, think, 

rganize, and express the information, which will evaluate the 

atient’s speech ability from both motor and cognitive aspects. 

t has been making great success in identifying patients with 

lzheimer’s-related dementia, aphasia, and some other cognitive- 

ommunication impairments ( Giles et al., 1996 ), and would be 

uitable for our stroke screening purpose. 

The subjects are video recorded when they are performing the 

wo tasks. The collection protocol is set up with an Apple iPhone 

, as shown in Fig. 2 b. Note that a phone rack and an auxiliary

icrophone will be used if the patient is too weak to hold the de- 

ice stably. Each video is accompanied by metadata information on 

oth clinical impressions by the ER physician (indicating the doc- 

or’s initial judgment on whether the patient has a stroke or not 

rom his/her speech and facial muscular conditions) and ground 

ruth from the diffusion-weighted MRI (including the presence of 

cute ischemic stroke, transient ischemic attack (TIA), etc.). Sam- 

les of such metadata information are shown in Table 1 . 

Note that in this dataset, the Clinical Impression is given af- 

er the ER screening by the doctors who usually have access to 

mergency imaging reports, vitals, and other information in the 

lectronic Health Records (EHR). Some early-enrolled patients are 



T. Cai, H. Ni, M. Yu et al. Medical Image Analysis 80 (2022) 102522 

Table 1 

Metadata info for subjects enrolled. (PE: Patient Example #). 

PE Complaint Clinical Impression Discharge Diagnoses Details 

1 Weakness DR: Stroke / TIA 1, Acute ischemic stroke L cortical infarct (precentral gyrus) 

and additional R corpus callosum 

(subacute) 

2, Dyslipidemia 

3, Type 2 diabetes A1c 

2 Other - Neurologic 

problem 

DR: Stroke / TIA 1, TIA right vertebral artery, V3, V4 Unable 

to obtain MRI due to metal artifact 2, possible TIA versus seizure 

3, acute metabolic encephalopathy 

4, UTI 

5, Obesity 

6, HLD 

7, HTN 

8, Pre-diabetes 

3 Tremor, Stuttering Aphasia, Ataxia, 

Unspecified 

Tremor, CVA 

1, Tremors Neurology gave pt DDx of acute 

ischemic stroke, TIA, and toxic- 

-metabolic. Workup ruled out CVA 

and indicated breakthrough 

4 ... ... ... ... 

Table 2 

Summary of subjects’ demographic information in the dataset. 

Attribute Group Stroke Non-Stroke Total 

Gender Male 76 32 108 

Female 83 30 113 

Age ≤ 65 y/o 80 36 116 

≥ 65 y/o 79 26 105 

Ethnicity Hispanic 12 4 16 

Non-Hispanic 146 52 198 

Opt-out 1 6 7 

Race African American 54 18 72 

Other 105 44 149 

All subjects 159 62 221 
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ot included later in this study due to missing clinical impres- 

ion data resulting from being transferred from another healthcare 

rovider. 

We have been recruiting new subjects to expand the dataset in 

he last few years. Up to the time of completing the manuscript, 

08 males and 113 females have been recruited, non-specific of 

ge, race/ethnicity, or the seriousness of stroke. Among the 221 in- 

ividuals, 159 are patients diagnosed with stroke using MRI, 62 

re patients who do not have a stroke but are diagnosed with 

ther clinical conditions. A summary of demographic information 

s shown in Table 2 . In this work, we formulate the diagnosing 

rocess as a binary classification task and only attempt to identify 

troke/TIA cases from non-stroke cases. Though there are varieties 

f stroke subtypes, binary output has been sufficient to function as 

 screening decision in ER. 

Our dataset is unique, as compared to existing ones ( Guo et al., 

017; He et al., 2007 ), because our cohort consists of actual pa- 

ients visiting the ERs and the videos are collected under uncon- 

trained, or “in-the-wild” conditions. Existing work generally setup 

xperimental settings before collecting the image or video data, 

hich will result in uniform illumination conditions and minimum 

ackground noise. In our dataset, the patients can be in bed, sit- 

ing, or standing, where the background and illumination are usu- 

lly not under ideal control conditions. Furthermore, previous work 

ften enforced rigid constraints over the subjects’ head motions, 

hich sidesteps the alignment challenges and makes the unrealis- 

ic assumption of having stable face poses. We only ask patients to 

ocus on the instructions, without rigidly restricting their motions. 

e use intelligent video-processing methods to accommodate for 

he “in-the-wild” conditions. The acquisition of facial data in natu- 

al settings allows comprehensive evaluation of the robustness and 

racticability of our work for real-world clinical use, remote diag- 

osis, and self-assessment in most settings. 
5

. Methods 

Fig. 3 shows the training framework of DeepStroke . We first pre- 

rocess the i -th input raw video to obtain the facial-motion-only, 

ear-frontal face sequence F i and its corresponding audio spectro- 

ram M i . Then we extract the audio-visual feature e i from F i and 

 i by a lateral-connected dual-branch Encoder E, which includes a 

ideo module �v for local visual pattern recognition, and an audio 

odule �a for global audio feature analysis. A subject Discrimina- 

or D is also employed to help E learn features that are insensi- 

ive to subject identity difference but are sensitive to distinguish- 

ng stroke from non-stroke. When training, we use the case-level 

abel as a pseudo label for each video frame and train the Deep- 

troke network as a frame-level binary classification model. We 

lso sample the intermediate output feature maps from different 

ideos to train D and E adversarially. During inference, we first 

erform frame-level classification and then calculate the case-level 

redictions by averaging over all frames’ probabilities to mitigate 

rame-level prediction noise. More details are described as follows. 

.1. Data preprocessing 

For each raw video, we propose a spatiotemporal proposal 

echanism to extract frontal-face sequences from the raw video. 

or each audio extracted from the raw video, we transform the 

oundtrack into a spectrogram that represents the amplitude at 

ach frequency level over time. 

Spatiotemporal proposal of facial action video: In facial mo- 

ion analysis, one challenge is to achieve good face alignment. As 

ur data are collected “in the wild”, we introduce a pipeline to 

xtract frame sequences with near-frontal facial pose and mini- 

um non-facial motions. First, we detect and track the patient’s 

ace with a rigid, square bounding box and estimate the poses. 

rame sequences 1) estimated with significant roll, yaw, or pitch, 

) showing continuously changing pose metrics, or 3) having ex- 

essive head translation or too little change estimated with opti- 

al flow magnitude with the previous frame, are excluded (detailed 

riteria are presented in Section 5.1 ). A video stabilizer with a slid- 

ng window over the trajectory of between-frame affine transfor- 

ations smooths out pixel-level vibrations on the sequences be- 

ore they are passed to the Encoder E. 

Speech spectrum analysis: Instead of transcribing the vocal au- 

io to text corpus ( Yu et al., 2020 ), which may suffer from transla-

ion errors, we turned to spectrograms for speech analysis due to 

he following reasons: (1) Spectrogram is the complete representa- 

ion of an audio file since the amplitude over frequency bands are 

aptured over time. Recent deep learning-based transcription mod- 
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Fig. 3. The training framework of DeepStroke . The preprocessing part involves a spatiotemporal facial frame sequence proposal and a transformation of audio features to 

spectrograms. In the encoder E, at any timestamp t , the input frame pairs f t 1 
i 

and f t 2 
i 

are guaranteed to be adjacent pairs, and the total spectrogram is duplicated and 

appended as the audio features for time t . The symbol � indicates the concatenation with the lateral connection. 

Fig. 4. Workflow of the discriminator D of DeepStroke . L cls will be calculated first 

using x _ O t 
i 
, the original input (including f t 1 

i 
and M i ), and generate feature embed- 

ding h t 
i 
. Then the encoder will freeze parameters and generate h s 

i 
and h k 

j 
for x _ A s 

i 

and x _ A k 
j 
, the adversarial inputs from the same/different cases. Positive label (+) is 

assigned to same-case pairs and negative (−) to different-case pairs. L adv is then 

calculated to update D , and a weighted sum of L cls and L adv is used to update E. 
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ls commonly transform soundtracks into spectrograms for their 

lassification models ( Hannun et al., 2014; Amodei et al., 2016 ). 

2) By choosing spectrogram, which is image-like input, we can 

dapt similar networks for the two branches and ensure they have 

ather similar training dynamics to converge at a similar pace, 

hich will make them cooperate better. In this work, we use the 

el Scale ( Stevens et al., 1937 ) and Fast Fourier Transform (FFT) to

ransform the audio signal before plotting the spectrogram. 

.2. Model design 

As Fig. 3 shows, after preprocessing the raw input videos, 

e further extract stroke-discriminative and identity-free features 

rom the input video and audio via the feature encoder E and the 

ubject discriminator D . 

Feature encoder: Let F i = ( f 1 
i 
, · · · , f T 

i 
) denotes a sequence of T 

emporally-ordered frames from the i -th input video and its cor- 

esponding spectrogram is M . We extract their features through 
i 

6

eature encoder E, which includes one video module �v and one 

udio module �a , fused by lateral connection. 

� Video Module. To extract temporal visual features from input 

 i , a pair of adjacent frames from F i is forwarded to the video 

odule �v . Due to the frame-proposal process, the original frame 

equence sometimes has long gaps between two nearby frames, 

hich will result in large, non-facial differences being captured. 

e tackle this by keeping track of the frame index and only sam- 

le a specific number of real adjacent frame pairs in F i (frame 

f 
t 1 
i 

and f 
t 2 
i 

) to extract local visual information. Instead of directly 

nputting a pair of frames, for better capturing subtle facial mo- 

ions between adjacent frames, we compute the image difference 

etween f 
t 1 
i 

and f 
t 2 
i 

and then pass it through the network as the 

eature for the frame pair f t 
i 
. 

� Audio Module. To extract disease patterns from the input au- 

io spectrogram M i , we feed M i to the audio module �a . Since 

 i contains the whole temporal dynamics of the input audio se- 

uence, we append M i to each frame pair x t 
i 

and x t+1 
i 

to provide a

lobal context for the frame-level stroke classification. 

� Lateral Connection. To effectively combine features of video F i 

nd audio M i at different levels, we also introduce lateral connec- 

ion ( Xiao et al., 2020 ) between the convolutional blocks of the 

ideo module �v and the audio module �a . To ensure the fea- 

ures are aligned when being appended, we perform 1 × 1 convo- 

ution ( Lin et al., 2013 ) to project the global audio feature to the

ame embedding space as the local frame features and then sum 

hem up. Compared with the late fusion of two branches used in 

ur prior work ( Yu et al., 2020 ), lateral connections-based fusion 

ot only combines more levels of features but also enables dif- 

erent branch dynamics to stay similar, which will maintain the 

onvergence rate of each branch to be relatively closer and help 

he global context better complement the local context during the 

raining stage. 

Subject discriminator: Due to the relatively small number of 

vailable videos, it is easy and tempting for the encoder E to mem- 

rize the facial and audio features of each subject and just match 

esting subjects with training subjects based on similarity in ap- 

earance and voice when performing the inference. To avoid this 

ssue of classification based on subject-dependent features, we fur- 

her design a subject discriminator D with an adversarial learning 

dea to help encoder E learn identity-free features. The discrimi- 
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ator D is designed to simply distinguish whether the input pair 

f intermediate features from encoder E are from the same sub- 

ect or not and will be used to adversarially train the encoder E. 

n the implementation, when we feed the (original) input data to 

he network, we will take another data batch (denoted as the ad- 

ersarial data) from either the same case or a different case with 

qual probability. When training D , both original and adversarial 

ata will be processed by the encoder E with parameters frozen for 

eature embeddings. If the original and adversarial data came from 

he same case, we assign a positive label to the embedding pair 

and a negative label otherwise). The generated feature embedding 

ill include both information from the audio and video (thanks 

o the lateral connection in the encoder E) and are used to train 

 . An adversarial loss is given to update D . The adversarial loss is

lso added to the classification loss for the later update of encoder 

. Details of the loss calculation is introduced in Section 4.3.2 

In theory, the network of DeepStroke can employ various net- 

orks as its backbone. Here we choose ResNet-34 for �v and 

esNet-18 for �a to accommodate the relatively small size of the 

ideo dataset and the simplicity of the spectrogram, and to reduce 

he computational cost of the framework. For the discriminator D , 

e follow the design of DCGAN ( Radford et al., 2015 ) with four

onvolution layers and binary output. For the intermediate feature 

nput to the discriminator, we take the frame-level feature e t 
i 

(out- 

ut feature from the decoder) for case i at time t . The choice of

ntermediate feature is ablated in Section 5.3.1 . 

Decision layers: During inference, because our model is trained 

ith pseudo frame-level labels, to mitigate frame-level prediction 

oise, we first perform frame-level classification using encoder E

nto final fused features e t 
i 
. e t 

i 
is then passed through the fully- 

onnected and softmax layers to generate the frame-level class 

robability score z t 
i 
. The case-level prediction c i is then obtained 

y stacking and averaging the frame-level predictions (stroke prob- 

bility ranging from 0 to 1) and compare with the decision thresh- 

ld. 

.3. Model training 

.3.1. Training with transfer learning 

Due to the relatively small number of samples available, the 

roposed deep neural network can overfit on the training sam- 

les and result in a “face-remembering” effect. Besides employ- 

ng the subject discriminator to alleviate this effect, we adopt 

 transfer-learning framework to train DeepStroke by starting 

ith pre-trained network backbones and freezing the parame- 

ers. Only the final output layers and the discriminator mod- 

le are fine-tuned. For the video module network, we employ 

tate-of-the-art fairness-aware face image pre-training, the Fair- 

ace ( Karkkainen and Joo, 2021 ) ResNet-34 model that was pre- 

rained on a face image dataset that has evenly distributed race, 

ge, and ethnicity attributes. This aims to reduce the common 

acial-attribute biases and prevent network overfitting on irrele- 

ant features. For the audio module, we apply an ImageNet-pre- 

rained ResNet-18 backbone as the transfer learning starting point 

o mitigate overfitting. The transfer learning improves the general- 

zability of the network and will be demonstrated in Section 5.3 . 

.3.2. Loss functions 

Classification loss : To help E learn stroke-discriminative fea- 

ures, we use a standard binary cross-entropy loss between the 

rediction z t 
i 

and video label Y i for all the training videos and their 

 frames: 

 cls (E) = −
∑ 

i 

∑ 

t 

(
Y i log z t i + (1 − Y i )(1 − log z t i ) 

)
. (1) 
s

7 
Adversarial loss: To encourage Encoder E to learn identity-free 

eatures, we introduce a novel adversarial loss to ensure that the 

utput feature map h t 
i 

does not carry any subject-related informa- 

ion. We impose this via an adversarial framework between the 

ubject discriminator D and feature encoder E, as shown in Fig. 3 . 

he latter, E, will provide a pair of feature maps, either computed 

rom the same subject video (h t 
i 
, h s 

i 
) at time t and s , or from dif-

erent subject videos (h t 
i 
, h k 

j 
) at time t and k , where time s and k

an be randomly chosen. Discriminator D then attempts to classify 

he pair as being from the same/different subject video using an l 2 
oss, as LS-GAN ( Mao et al., 2017 ) adopts: 

 adv (D ) = −
∑ 

i 

∑ 

t 

(∥∥D (h 

t 
i , h 

s 
i ) 

∥∥
2 

+ 

∥∥1 − D (h 

t 
i , h 

k 
j ) 
∥∥

2 

)
. (2) 

he adversarial framework further imposes a loss function on the 

eature encoder E that tries to maximize the uncertainty of the dis- 

riminator D output on the pair of frames: 

 adv (E) = −
∑ 

i 

∑ 

t 

(∥∥∥1 

2 

− D (h 

t 
i , h 

s 
i ) 

∥∥∥
2 

+ 

∥∥∥1 

2 

− D (h 

t 
i , h 

k 
j ) 

∥∥∥
2 

)
. (3) 

hus the encoder E is encouraged to produce features that the dis- 

riminator D is unable to classify if they come from the same sub- 

ect or not. In so doing, the features h cannot carry information 

bout subject identity, thus avoiding the model to perform infer- 

nce based on subject-dependent appearance/voice features. Note 

hat our model is different from classic adversarial training used in 

ANs ( Goodfellow et al., 2014 ) because we only focus on classifi- 

ation and there is no generator network in our framework. 

Overall training objective : During training, we minimize the 

um of the above losses: 

 = L cls (E) + λ(L adv (E) + L adv (D )) , (4) 

here λ is the balancing parameter. The first two terms can be 

ointly optimized, but the discriminator D is updated while the en- 

oder E is held constant. 

. Experiment 

To better present the details of our proposed method, we first 

ntroduce the setup and implementation details and then show 

he comparative study with baselines. We also ablate the power 

f model components and structures to validate our design. 

.1. Setup and implementation 

The whole framework is running on Python 3.7 with 

ytorch 1.1, OpenCV 3.4, CUDA 9.0, and Dlib 19. Both ResNet 

odels are pre-trained on ImageNet ( Deng et al., 2009 ). Each.mov 

le from the iPhone will first be separated as frame sequences as 

atches of.png files and one global.wav audio file. 

For the frame sequences, we detect the location of the pa- 

ient’s face as a square bounding box with Dlib ’s face detec- 

or ( King, 2009 ) and track it using the Python implementation 

f the ECO tracker ( Danelljan et al., 2017 ). We perform pose esti- 

ation by solving a direct linear transformation from the 2D land- 

arks predicted by Dlib to a 3D ground truth facial landmarks 

f an average face, which resulted in three values corresponding 

o the angular magnitudes over three axes—pitch, roll, and yaw. 

o tolerate estimation errors, we regard those with angular mo- 

ions less than a threshold β1 as frontal faces. A 5-frame sliding 

indow records the between-frame changes in the pose. If the to- 

al changes (three axes) sum up to more than a threshold β2 , we 

bandon the frames starting from the first position of the sliding 

indow. In the meantime, the between-frame changes are mea- 

ured by optical flow magnitude. If the total estimated change is 

maller than β (no motion) or larger than β (non-facial motions), 
l h 
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e also exclude the frame. We empirically set β1 = 5 ◦, β2 = 20 ◦,

l = 0 . 01 , and βh = 150 . After manipulation, we crop the size of

ach frame to 224 × 224 × 3 to align with the ImageNet dataset. 

he real frame numbers are kept to ensure that only adjacent 

rame pairs are loaded to the network. 

For the audio files, we use librosa to load and trim the 

oundwave, and plot the Log-Mel spectrogram, where the hori- 

ontal axis is the temporal line, the vertical axis is the frequency 

ands, and each pixel shows the amplitude of the soundwave at 

he specific frequency and time. The output spectrogram is also set 

o the size of 224 × 224 × 3 . 

The entire pipeline is trained on a server computer with a hex- 

ore CPU, 64GB RAM, and an NVIDIA GPU with 24GB VRAM. To 

ccommodate for the class imbalance inside the dataset and ER 

etting, a higher class weight of 2.0 is assigned to the non-stroke 

lass. The default learning rate is set to 1e-7 with decay after every 

ve epochs, and we early stop at epoch 20 due to the quick con- 

ergence of the network. The batch size is set to be 64 and λ in

4) is set to be 10 for loss scaling purposes. Model parameters and 

earning rates are then tuned separately for each model/baseline in 

ach experiment. 

.2. Baselines and experiments 

We construct baseline models for both video and audio tasks. 

or each case (video/audio), the ground truth for comparison is the 

inary diagnosis result obtained through the MRI scan. Our chosen 

aselines are introduced as follows: 

• Audio module �a : The first corresponding baseline is the strip 

audio module from the proposed method that takes the spec- 

trograms as input. We use the same setup to train the audio 

module and obtain binary classification results on the same 

data splits. The separate audio module takes the same transfer- 

learning setup as the full model. 
• Video module �v : The other baseline is the strip video mod- 

ule from the proposed method that takes the preprocessed 

frame sequences as input. We use the same adversarial training 

scheme and transfer-learning setup to train the video module 

and obtain binary classification results on the same data splits. 
• I3D: The Two-Stream Inflated 3D ConvNet (I3D) ( Carreira and 

Zisserman, 2017 ) expands filters and pooling kernels of 2D im- 

age classification ConvNets into 3D to learn spatiotemporal fea- 

tures from videos. It was the state-of-the-art model years ago. 

For our task, I3D can be inferior because the calculation of op- 

tical flow can be time-consuming and result in more noise. 
• SlowFast: The SlowFast ( Feichtenhofer et al., 2019 ) network is a 

video recognition network proposed by Facebook that involves 

a Slow pathway to capture spatial semantics and a Fast path- 

way to capture motion at fine temporal resolution. SlowFast 

achieves strong performance on action recognition in video and 

has been a powerful state-of-the-art model in recent years. 
• MMDL: Our prior work MMDL ( Yu et al., 2020 ) is a prelim-

inary version of the proposed two-branch method that takes 

similar preprocessed frame sequences for the video branch, but 

text transcripts for the audio branch. The video branch uses fea- 

ture difference instead of image difference (which we will ab- 

late later), and the audio branch was an LSTM that performs 

text classification. Due to drastically different network struc- 

tures, the two branches only have connections in the final layer 

using a “late-fusion” scheme. 

In evaluation, we conducted both a 5-fold cross-validation ex- 

eriment and a time-cutoff hold-out experiment. In the cross- 

alidation experiment, the full dataset is split randomly and evenly 

nto 5 folds. Each fold takes four folds for training and the rest 
8 
or testing, and the model will be reset for each fold. We as- 

ess the model performance by the accuracy, specificity, sensitiv- 

ty, and area under the ROC curve (AUC). In the time-cutoff hold- 

ut experiment, we set the first recruited 168 cases as the train- 

ng/validation set and the later 53 cases as the testing set. We per- 

orm a similar 5-fold cross-validation over the training/validation 

et and use the saved five top models from each training fold to 

redict the cases in the testing set. We report the mean, standard 

eviation, and range of the AUC as both the model performance 

nd stability benchmark. 

Because our objective is to perform stroke screening for in- 

oming patients, the proposed methods and the baselines are 

ompared to the triage team’s performance in stroke pre-hospital 

creening and the ER doctors’ clinical impression we obtained with 

he metadata. As the real stroke triage in ER often happens when 

here is stroke onset of the patient, the triage result was not able 

o be fully collected like the ER doctor’s clinical impression in our 

ataset, due to the high risk of delayed diagnosis and IRB restric- 

ions. The performance measurement of the triage team is from 

nother internal study based on a much larger cohort of patients 

ver a longer period of time. 

.2.1. Cross-Validation experiment 

In the cross-validation experiment, 80% data are used for train- 

ng and 20% data are used for testing. We first select one fold as 

he test set and train a model based on the four other folds. Af- 

er the experiment using one fold as test set is completed, another 

older is used as the test set and a new model is trained using 

he remaining four folds; note that, the new model is re-initialized 

hen using a new test fold, to ensure the testing data is never 

een by the new model. The model that achieves the best result 

mong the first 20 epochs on the current test fold is saved, and the 

verall performance of the current experiment is calculated with 

ll the five folds’ testing results (which covers the whole dataset). 

yperparameters of the experimental setup are tuned based on the 

verall cross-validation performance on the whole dataset. 

Besides contrasting the model performance with the triage 

eam and ER doctors, we further examine the effectiveness of 

ur proposed methods in reducing false negatives and improv- 

ng stroke screening sensitivity by aligning the specificity of each 

ethod to be the same as the triage performance by changing 

he threshold for binary cutoffs, while checking and comparing for 

ther measurements. The results are shown in Table 3 . For better 

omparison, the ROC curves for the proposed model and baselines 

re also plotted in Fig. 5 , together with the triage performance 

nd clinical impression performance. For reference, we include the 

erformance of a “dummy” classifier that predicts all cases to be 

troke/positive. 

From both Table 3 and Fig. 5 , one can see that our proposed

eepStroke outperforms several state-of-the-art methods as well 

s its single module variants. Both the Audio Module �a and the 

ideo Module �v achieve an AUC level of around 0.6, showing very 

igh sensitivity while suffering from low specificity. Comparing the 

ideo Module �v with two state-of-the-art video recognition mod- 

ls, we can also see a much higher model performance. When 

pecificity is aligned, Video Module �v achieves 11.77% higher ac- 

uracy, 16.35% higher sensitivity, and 0.0917 higher AUC than I3D 

nd 16.29% higher accuracy, 22.64% higher sensitivity, and 0.1357 

igher AUC than SlowFast. When �a and �v collaborate, a decent 

erformance gain is seen in both our previous work Multimodal 

eep Learning (MMDL) and our proposed DeepStroke . The MMDL 

ethod achieves 0.6414 AUC; when specificity is aligned with 

riage performance at 45.16%, a sensitivity of 72.96% is reported, 

hich is 2.78% higher than the Triage performance. Compared with 

ur prior work MMDL, DeepStroke achieves 0.0749 higher AUC. 

hen specificity is aligned to Triage, sensitivity is improved by 
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Table 3 

Results of the cross-validation experiment. Raw: results with decision threshold 0.5 after the final softmax 

output; aligned: results with the threshold that makes the specificity aligned with the Triage performance. Due 

to the dataset limitation, exact alignment is not possible. We take and report the closest possible alignment 

value. The best performance of each metrics among the model/baselines is highlighted in bold. 

Accuracy (%) Specificity (%) Sensitivity (%) AUC 

Model/Baseline Raw Aligned Raw Aligned Raw Aligned —

Dummy 71.95 0.00 100.00 0.5000 

Module �a (Audio) 62.89 63.35 24.19 45.16 77.99 70.44 0.5998 

Module �v (Video) 68.32 62.90 16.13 45.16 88.68 69.81 0.6042 

I3D (Video) 71.04 51.13 17.74 45.16 91.82 53.46 0.5125 

SlowFast (Video) 70.13 46.61 8.01 45.16 94.34 47.17 0.4685 

MMDL (Audio + Video) 63.80 65.16 30.65 45.16 76.73 72.96 0.6414 

DeepStroke (Audio + Video) 72.40 71.40 32.26 45.16 88.05 81.13 0.7163 

Triage Stroke Screening (Triage) 64.03 45.71 70.19 —

Clinical Impression (CI) 69.23 51.61 76.10 —

Fig. 5. The ROC curve from 5-fold cross-validation for the proposed DeepStroke and 

other baselines. The blue dot shows the performance of the triage team in stroke 

screening (Triage), and the green dot shows the performance of clinical impression 

(CI) from ER physicians. The dashed line is for a “dummy classifier” that predicts 

all cases to be stroke/positive. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Table 4 

Model and baseline performance compared with ER doctor’s Clinical Impression (ER 

CI). 

Baselines Accuracy (%) Specificity (%) Sensitivity (%) 

Clinical Impression (CI) 69.23 51.61 76.10 

DeepStroke (Spec. Aligned) 71.04 51.61 78.61 

DeepStroke (Sens. Aligned) 69.68 53.22 76.10 
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.27%. This is a major improvement considering the prior work has 

lready demonstrated good performance on the preliminary ver- 

ion of the dataset. 

We believe the improvements came from the following aspects. 

irst, by adopting a different audio representation and introduc- 

ng the lateral connections, the proposed framework resolves the 

nstable convergence problem in the prior work caused by dif- 

erent training dynamics of branches, while also sharing low- and 

igh-level features for a better combination of global audio con- 

ext and local frame features. Secondly, our adversarial training 

cheme can keep the network from remembering the identity fea- 

ures and extract pure stroke-related features for the network to 

earn, which also mitigates the overfitting problem. Thirdly, intro- 

ucing the transfer learning pipeline and adopting fairness-aware 

ace pre-training mitigate the network’s overfitting on facial at- 

ributes, and improves the generalizability. The three aspects are 

iscussed in the following ablation studies ( Section 5.3 ). Finally, in 

nother aspect, using spectrograms instead of transcripts will max- 

mally preserve the patterns in the original audio files since the 

oundwave information is fully presented without inference, addi- 

ion, or deletion. 

When compared with the triage team performance, the pro- 

osed DeepStroke shows 10.94% higher sensitivity, and 7.37% higher 
9 
ccuracy while achieving the same specificity, illustrating its prac- 

icability and effectiveness. The performance is comparable to the 

R doctors’ clinical impressions (CI). This is also of great signifi- 

ance considering the doctors generally will refer to the patients’ 

T results, vital signals, and EHR for past stroke history. From 

ig. 5 , the proposed DeepStroke achieves close (and slightly bet- 

er) performance. For better comparison, we report results when 

he specificity and sensitivity of DeepStroke aligned with ER CI in 

able 4 . 

Summarizing Table 3, Table 4 , and Fig. 5 , we conclude that the 

roposed DeepStroke is powerful in performing pre-hospital stroke 

creening and is able to outperform traditional stroke triage. It 

chieves comparable or better performance with much less avail- 

ble information. 

With new patients continually being added to the cohort, our 

ataset is becoming more and more diverse and even more chal- 

enging for the clinicians (for the original dataset, clinicians had 

2.94% accuracy, 77.78% specificity, and 70.68% sensitivity). We in- 

er that this is due to the addition of a number of hard cases, 

here the patterns for stroke are too subtle for the clinicians to 

apture. Even so, when we align specificity, the proposed method 

till outperforms the clinicians. ER doctors tend to rely more on 

he speech abilities of the patients and may have difficulty in cases 

ith too subtle facial motion incoordination. We infer that the 

ideo module in our framework can detect those subtle facial mo- 

ions that doctors can neglect and complement the diagnosis based 

n speech/audio. The drop in specificity is regarded as permissi- 

le compared to the improvements in sensitivity because, in stroke 

creening, failing to spot a patient with stroke (false-negative) will 

esult in very serious results. 

.2.2. Holdout experiment 

Aside from the cross-validation experiments, to ensure the clin- 

cal significance of our proposed methods, we conducted a hold- 

ut experiment. Cases in our dataset are ordered by their time 

f data acquisition. To maximally resemble the clinical situation, 

mong the 221 collected cases, we set the first 168 cases for train- 

ng/validation and the subsequent 53 cases for testing. This keeps 

he ratio of the testing set to be 25% of the dataset, while we 

an ensure the testing set has a similar class ratio to the train- 
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Table 5 

Results of the hold-out experiment. The metrics are calculated 

based on the testing AUC of the five saved models from each fold 

on the aforementioned testing set. SD: standard deviation. ↑ in- 

dicate higher the value, better the performance, and ↓ means the 

opposite. The best values are in bold. 

Mean ↑ SD ↓ Range ↑ 
Module �a (Audio) 0.4631 0.1389 [0.2263, 0.6386] 

Module �v (Video) 0.5242 0.0320 [0.4895, 0.5649] 

MMDL 0.6417 0.0475 [0.6018, 0.7333] 

DeepStroke 0.7214 0.0368 [0.6772, 0.7895] 

Fig. 6. Cross-fold hold-out testing AUC plot for the proposed DeepStroke and other 

baselines. 
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Table 6 

Ablation study results. The first block of rows ablates the lateral connection we 

designed over the model components, the second block ablates the other choice of 

making frame pair difference, and the third block ablates other choices of extract- 

ing encoded features for the discriminator. Experiments share the same setup as 

the cross-validation experiments in Section 5.2.1 and parameters are tuned sepa- 

rately. 

Baselines Accuracy (%) Specificity (%) Sensitivity (%) AUC 

w/o transfer 62.44 37.10 72.33 0.5611 

w/o lateral 71.49 37.10 84.91 0.6881 

w/o adversarial 68.87 17.78 90.57 0.5568 

Conv-Diff 69.78 25.80 85.53 0.6680 

Feature #1 69.23 30.64 84.28 0.6679 

Feature #2 69.23 25.80 86.16 0.6690 

Feature #3 69.23 16.13 89.94 0.6678 

DeepStroke 72.40 32.26 88.05 0.7163 
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ng/validation set. In the training/validation set, we have 121 stroke 

ases and 47 non-stroke cases resulting in a ratio of 2.57; in the 

esting set, there are 38 stroke cases and 15 non-stroke cases, giv- 

ng a ratio of 2.53. In this holdout study, we test the best mod- 

ls acquired from 5-fold cross-validation (with training/validation 

et) on the unseen hold-out testing data. We refer to AUC as the 

aved model performance benchmark on the testing data. Because 

ach of the five folds will save the best model, we report the mean,

tandard deviation, and range of the AUC across these models. We 

lso plot the cross-fold AUC for our proposed methods and base- 

ines to demonstrate the stability of our method. Note that due to 

he apparent low performance of the state-of-the-art video base- 

ines, we omit I3D and SlowFast in the holdout experiment. 

As shown in Table. 5 , the DeepStroke framework can achieve 

table and high performance in our stroke screening task. A steady 

mprovement from our previous work (MMDL) is observed. To bet- 

er present the results, we plot the testing AUC of different models 

n Fig. 6 . 

The testing performance from any of the folds generated with 

he DeepStroke is stable and high. With audio alone, the test perfor- 

ance has seen large variations across different fold models. This 

s not presented in the cross-validation experiment above. In some 

olds ( i.e., fold #4 in Fig. 6 ), the saved model was performing the

est in the validation set but is giving a very low AUC score on the

esting set. We infer that merely relying on the patient’s speech au- 

io is insufficient to recognize stroke patterns, as the audio input 

ncludes a large number of unused patterns and noises. The video 

ata, on the other hand, performs relatively stable yet has been 

nable to recognize non-stroke cases. The collaboration of the au- 

io module and the video module, as both the previous work and 

he proposed DeepStroke demonstrates, achieves noticeable perfor- 

ance gain. Furthermore, with the proposed improvements over 

he previous work, DeepStroke can perform stroke screening with 

igher stability and better performance. 
10 
.3. Ablation study 

.3.1. Model designs 

To evaluate the effectiveness of different designs in our pro- 

osed model, we perform the following ablation studies. Note that 

he reported statistics are based on the 5-fold cross-validation re- 

ults on the same dataset stated above. Here, we denote DeepStroke 

s the full model that introduced lateral connection, adversarial 

raning, and transfer learning to the network introduced in our 

revious work. 

• Model without transfer learning (w/o transfer): We demon- 

strate the value of our transfer learning setup by contrasting 

it with a baseline model that takes the same network design 

as the DeepStroke but does not freeze parameters. The baseline 

model discards 1) FairFace as face video network backbone pre- 

training and 2) ImageNet as audio network pre-training, and 

was trained from scratch. 
• Model without lateral fusion (w/o lateral) : The lateral con- 

nection we designed for the two branches was updated from 

the late fusion scheme in our prior work to connect the two 

branches at different levels. An experiment was made to only 

use the late fusion as a comparison to the full proposed model 

to show the power of the lateral fusion. 
• Model without adversarial training (w/o adversarial) : The 

adversarial training scheme aims to extract stroke-related 

identity-free features. We train the same model without the ad- 

versarial scheme to see the improvements. 
• Frame difference (Conv-diff) : In the proposed method, we set 

the two consecutive frames to form a difference at the very 

beginning of the network, but such subtraction can be made 

elsewhere–in the middle of the network or at the back of the 

network ( i.e. , the deep features generated from the framework). 

An extra experiment is conducted on the frame subtraction 

scheme that takes the difference of features after one Conv 

layer as used in our prior work. 
• Discriminator feature input stage (Feature #) : When adver- 

sarial training for distilling the subjects’ identities, our network 

takes the encoded features after all four blocks of ResNet. We 

have other stages where features are extracted for the adversar- 

ial training, ( i.e. , after the first block, after the third block, and 

after the third layer). 

From Table 6 , we could conclude that the lateral connection, 

ransfer learning, and adversarial training have been improving the 

erformance of the framework as expected. The lateral connection 

mproves the overall statistics with 0.0282 in AUC, indicating a bet- 

er learning outcome that may result from better balanced two- 

ranch learning dynamics. By applying transfer learning, we no- 

iced a clear performance gain in terms of sensitivity of 15.72% and 

 0.1552 improvement in AUC. The FairFace pre-training reduces 
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Table 7 

Validation results for African American cases when training the framework on other 

cases. The experiments are trained on 149 other cases while 72 African American cases 

are used as validation data. Best test performance on African American test set in 20 

epochs is reported. 

Experiment Accuracy (%) Specificity (%) Sensitivity (%) AUC 

DeepStroke 70.83 50.00 77.77 0.6967 

w/o FairFace 66.66 38.89 75.93 0.6821 

w/o Transfer Learning 63.88 61.11 64.81 0.6255 

Table 8 

Validation results for different attribute groups. The number in the bracket indicates the total number of cases in 

the group. Some subjects opt-out for ethnicity or race questions and are excluded. Model: DeepStroke , CI: Clinical 

Impression. Values in red are considered to yield fairness concerns. 

Accuracy (%) Specificity (%) Sensitivity (%) AUC 

Group Attribute Model CI Model CI Model CI Model CI 

Gender Male (108) 75.00 66.39 34.38 60.00 92.10 69.05 0.6772 —

Female (113) 70.80 66.11 25.00 48.49 83.15 72.72 0.6905 —

Age ≤ 65 y/o (120) 72.50 67.67 40.00 54.76 83.33 73.63 0.7048 —

≥ 65 y/o (101) 73.27 64.49 19.23 53.84 92.00 67.90 0.6728 —

Ethnicity Hispanic (16) 75.00 88.23 40.00 75.00 90.90 92.31 0.8545 —

Non-Hispanic (198) 72.22 65.27 28.57 55.17 86.58 68.99 0.66.15 —- 

Race African American (72) 69.44 61.84 23.08 45.00 79.66 67.86 0.5580 —

Other (149) 74.50 68.29 32.56 58.33 91.51 72.41 0.7411 —

All subjects (221) 72.40 69.23 32.26 51.61 88.50 76.10 0.7163 —
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he potential biases from facial attributes so that the network has 

ess reference to such features when making a decision. The adver- 

arial training also drastically improved the specificity (14.48% as 

hown) and resulted in a better learning result (0.1483 improve- 

ents in AUC), and we believe the features for stroke are more 

learly revealed with this training scheme. Our choice of features 

ut of different network layers also demonstrated the effectiveness 

f using final concatenated features for the use of a discriminator. 

.3.2. Model fairness 

We also examined the discrepancy between different genders, 

aces/ethnicity, and age groups in our dataset. Specifically, we ex- 

mine the following attribute groups in Table 8 and report the val- 

dation results within the 5-fold cross-validation experiment result 

n the proposed model: 

• Gender: Previous studies point out that gender discrepancy 

is noticeable for stroke: women show unique patterns that 

are often neglected ( Colsch and Lindseth, 2018 ). The proba- 

bility of men getting misdiagnosed with stroke is lower than 

women ( Newman-Toker et al., 2014 ). To compare how clinicians 

and our model perform regarding this discrepancy, we report 

results on different gender groups. 
• Age: The risk for stroke increases with age. According to na- 

tional statistics, the majority of patients hospitalized for stroke 

are over 65 years old ( Hall et al., 2012 ). This prior is not clearly

shown in our dataset, partly because some older patients are 

having more serious conditions and are not enrolled in this 

study. 
• Ethnicity: According to Trimble and Morgenstern (2008) , the 

incidence of stroke in Hispanics is significantly higher than 

in Non-Hispanic whites. Hispanics are also believed to have a 

higher rate of stroke recurrence ( Sheinart et al., 1998 ). Note 

that due to the relatively limited Hispanic participants in our 

current version of the dataset, the comparison may not be in- 

dicative enough for the discrepancy. 
• Race: African Americans have nearly twice as high a risk 

of first stroke compared to others ( Virani et al., 2020 ) 

and the highest mortality rate ( Centers for Disease Control 

and Prevention, 2019 ). African Americans also receive less 
11 
evidence-based care and have a higher risk of stroke recur- 

rence ( Schwamm et al., 2010 ). Another potential issue is con- 

cerned with the biases in current face-related computational 

models that are mainly trained on image/video samples from 

non-African-American participants. 

Table 8 shows that the validations on most of the attribu- 

ion groups result in a relatively stable AUC (variations are ex- 

ected considering the relatively small number of samples). For 

he attribute of gender and ethnicity, the variation among differ- 

nt groups can be regarded as reasonable. The results on African 

merican subjects raise some concern as the AUC falls to 0.5580, 

ndicating that the model trained on the complete dataset is not 

icking up the African American cases very well. This is likely due 

o the larger imbalance of positive/negative cases among African 

merican groups compared to the complete dataset (54 stroke 

ases, 18 non-stroke cases). A further ablation study is conducted 

o train the framework with different setups on other cases and 

alidate on African American cases and the result is shown in 

able 7 . 

In this hold-out experiment, we notice that the model per- 

ormance is respectable when trained with no African American 

ases but validated only on African American cases. Using the 

ull DeepStroke , the validation performance is at 0.6967 AUC. We 

hen replaced the FairFace pre-training with ImageNet pre-training 

nd obtained a slightly worse result with 0.6821 AUC. If trained 

rom scratch, i.e., without transfer learning, the model performance 

ropped vastly to 0.6255 AUC. From the experimental results in 

able 7 , we can conclude that, by adopting the transfer learning 

cheme and FairFace pre-training, DeepStroke can better reduce fa- 

ial attribute-related biases and improve the generalizability of the 

ethod. 

Another potentially biased attribute group is age. Age is a 

nown factor for the risk of stroke and with higher age, the prob- 

bility of stroke is greatly increased. Both the model and clinical 

mpression have a rather large discrepancy in specificity between 

he two age groups, and cases younger than 65 years old are much 

igher in specificity. To further look into and attempt to under- 

tand this discrepancy, we first train on younger cases and validate 



T. Cai, H. Ni, M. Yu et al. Medical Image Analysis 80 (2022) 102522 

Table 9 

Ablation study on age attribute. The first row is trained on younger cases ( ≤
65 y/o) and tested on older cases ( ≥ 65 y/o), and the second row is trained on 

older cases and trained on younger cases. 

Experiment Accuracy (%) Specificity (%) Sensitivity (%) AUC 

≤ 65 y/o 68.31 30.77 81.33 0.6203 

≥ 65 y/o 68.33 38.89 80.95 0.6257 
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n older cases, and then do the reverse. The results are shown in 

able 9 . 

The result shows a similar classification accuracy at 0.62 AUC 

nd is lower than training on all data, which partly indicates that 

he network may be able to extract useful age information from 

he patients and use it as a feature for prediction. We infer that 

he relatively lower specificity and high sensitivity among the age 

roup over 65 years old is also a consequence of heavier class im- 

alance (79 stroke cases, 26 non-stroke cases), and the network 

refers to give a positive prediction on patients in the higher age 

and. This could reduce the risk of missing a real stroke case in 

he ER and could potentially save the patient. 

. Discussion 

We analyze the running time of the proposed approach. The 

ecording runs for a minute, the extraction of audio and genera- 

ion of spectrograms takes an extra minute, and the video process- 

ng is completed in three minutes. The prediction with the deep 

odels can be achieved within half a minute on a desktop with 

 mid-level GPU (NVIDIA GTX1070). Therefore, the evaluation pro- 

ess takes no more than six minutes per case. More importantly, 

he process is almost running at zero external cost and would be 

ontactless, not harming the patients with equipment or by radia- 

ion. Considering a complete MRI scan will take more than an hour 

o perform, a specialized device to run, and hundreds of dollars 

harged, the proposed method is ideal for performing both cost 

nd time-efficient pre-hospital stroke assessments in an emergency 

etting. 

It is worth mentioning that although our proposed method is 

emonstrated to outperform triage stroke screening performance 

y a margin and is comparable to or better than ER doctors who 

ave access to richer patient data, its use should be limited to 

hat of an AI assistant during the ER triage stage to help to detect 

on-obvious strokes and mitigate the risk of misdiagnosing. The CT 

can should be taken as the next step to identify the stroke sub- 

ypes and estimate damaged regions for the reference of doctors in 

erforming interventions. 

We expect that our proposed approach will be clinically rele- 

ant and can be deployed effectively on smartphones for fast and 

ccurate assessment of stroke by ER doctors, tele-stroke neurolo- 

ists, at-risk patients, or caregivers. If the approach is further opti- 

ized and deployed onto a smartphone, we can perform the spa- 

iotemporal face frame proposal and speech audio processing on 

he phone. Cloud computing can be leveraged to perform the pre- 

iction in no more than a minute after the frames are compressed 

nd uploaded. In such a case, the total time for one assessment 

hould be within a few minutes. Moreover, with minimal user ed- 

cation required, such a framework can allow for the patients’ self- 

ssessments even before the ambulance arrives. With different la- 

eling of data, the pipeline is also valuable in the screening of 

ther oral-facial neurological conditions. 

We also noticed that when clinicians are performing stroke 

creening in the ER, they would consider race, ethnicity, and age as 

actors, and they may also refer to the patients’ EHR for previous 

troke records. Such information is missing from our dataset. While 

e would like to find patterns directly from facial motions and 
12 
peaking voices, these factors are certainly beneficial to be adopted 

s auxiliary information that may guide the framework to project 

ifferent probabilities of stroke for different demographic groups 

eferring to the prior distributions. 

Through our experiment, we noticed that the dataset we have 

een collecting for the pilot study purposes is still preliminary and 

mall, especially for the evaluation of various demographic sub- 

roups. Also, with a limited number of cases available, the dataset 

ould be insufficient to cover all possible patterns of stroke in 

acial motions and speech. The limitation also leads to the per- 

ormance discrepancy in the African American cases and among 

ge-related attribute groups. We are working towards a large-scale 

linical trial that targets about 10 0 0 cases to evaluate the proposed 

ethod and further improve its robustness. When enough data is 

vailable, we would also pick a verified set of held-out test data to 

over expected variations and use it as the public evaluation stan- 

ard for this task. 

To compensate for the relatively small data size, while we have 

een trying to expand our dataset, we also considered two data 

ugmentation schemes and attempted to apply them to the frame- 

ork, including: 

• We recruited Amazon MTurk independent contractors to per- 

form the same speech tasks and use these data to augment the 

non-stroke cases. For future study purposes, we collected more 

than enough data to balance the minority class. We trained 

an audio ResNet-18 (audio module) based on spectrograms and 

noticed higher testing performance and better stability of the 

augmented audio module in the hold-out experiment. However, 

when the balanced-data-trained models were set as transfer 

learning starting points for the audio sub-network, testing AUC 

of the whole model (including both audio- and video- mod- 

ules) drastically dropped. We suspect this is because audio pre- 

trained model augmented by normal audio makes the whole 

model less generalizable. 
• We used one of the best-performing facial motion transfer al- 

gorithms ( Wang et al., 2021 ) and attempted to transfer facial 

motions from non-stroke patients to public online faces, and 

pair the transferred facial movies with the collected MTurk au- 

dio to generate synthetic negative cases. However, the addition 

of such cases did not help improve the network performance. 

We noticed that the motion transfer constantly fails to preserve 

stroke-indicative motions and introduces more artifacts, mainly 

due to wrinkles and other uncommon facial patterns. 

We will further investigate other possibilities of data augmen- 

ation for improving the framework’s performance 

We recognize other limitations of our work. First, the spa- 

iotemporal facial frame proposal method is preliminary and is un- 

ble to eliminate all non-facial motions. This induces errors in the 

aptured facial motion features. Also, the state-of-the-art 2D fa- 

ial landmark tracking and pose estimation algorithms still induce 

onsiderable error in the pipeline. A plan is to collect 3D data in- 

tead of 2D so that we could achieve accurate alignment and re- 

onstruction of subjects’ faces. With an accurate mesh representa- 

ion of the subjects’ facial motions, we could model the motions 

f different facial regions and correlate them to different areas 

f brain lesions. The representation could also help reduce color 

ias and naturally remove identity from subjects, which is promis- 

ng. Second, the computational workload of the whole pipeline is 

till heavy for mobile deployment. In conditions with low network 

andwidth, the transfer of collected data could be a serious bot- 

leneck and hinder the efficiency of the screening process. Future 

ork would need to address these issues and improve the frame- 

ork for even better clinical performance. 

As a future work, we intend to develop DeepStroke+ that re- 

olves the existing issues of our current framework and functions 
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s a full stroke diagnosis AI assistant to span the stroke triage 

ill discharge and treatment. DeepStroke+ will be based on the 

uch larger dataset collected through the clinical trial and adopt 

loud/mobile computing for efficient, mobile assessment. The an- 

icipated model will be taking 3D facial data uploaded with mobile 

ortals and linked to the patient’s EHR, demographics, vitals, and 

T report as multi-modal input. DeepStroke+ will be developed as 

 multi-task network to support the additional decision of stroke 

ubtypes and lesion regions and provide detailed reports to the ER 

linicians. 

. Conclusion 

In this work, we presented a novel multi-modal deep learning 

ramework, DeepStroke , for on-site clinical triage of stroke in an ER 

etting. Our framework can perform accurate and efficient stroke 

creening based on the abnormalities in the patient’s speech abil- 

ty and facial muscular movements. We constructed a dual branch 

eep neural network for the classification of patient facial video 

rame sequences and speech audio as spectrograms to capture 

ubtle stroke patterns from both modalities. Experiments on our 

ollected clinical dataset with real, diverse, “in-the-wild” ER pa- 

ients demonstrated that the proposed approach not only outper- 

orms the traditional stroke triage with a 10.94% higher sensitiv- 

ty rate and 7.37% higher accuracy when specificity is aligned but 

lso outperforms well-trained ER clinicians with more information 

vailable. Also, ablation studies validated the value of our multi- 

odal lateral fusion method, transfer learning pipeline, and adver- 

arial training scheme, which collaboratively improve our proposed 

odel from our prior work. The DeepStroke has also been verified 

o be efficient and provide a screening result for the reference of 

linicians in minutes. 

Before a clinical deployment, we will continue to conduct the 

linical trial, enlarge the dataset, improve the efficiency of the 

ipeline, and develop the current method into a 3D mobile frame- 

ork. Future efforts may also try to address the potential biases 

n the current model and apply the method to other neurological 

onditions. 
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