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Abstract. The placenta is a valuable organ that can aid in under-
standing adverse events during pregnancy and predicting issues post-
birth. Manual pathological examination and report generation, however,
are laborious and resource-intensive. Limitations in diagnostic accuracy
and model efficiency have impeded previous attempts to automate pla-
centa analysis. This study presents a novel framework for the automatic
analysis of placenta images that aims to improve accuracy and effi-
ciency. Building on previous vision-language contrastive learning (VLC)
methods, we propose two enhancements, namely Pathology Report Fea-
ture Recomposition and Distributional Feature Recomposition, which in-
crease representation robustness and mitigate feature suppression. In ad-
dition, we employ efficient neural networks as image encoders to achieve
model compression and inference acceleration. Experiments validate that
the proposed approach outperforms prior work in both performance and
efficiency by significant margins. The benefits of our method, including
enhanced efficacy and deployability, may have significant implications for
reproductive healthcare, particularly in rural areas or low- and middle-
income countries.
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1 Introduction

World Bank data from 2020 suggests that while the infant mortality rate in
high-income countries is as low as 0.4 percent, the number is over ten times
higher in low-income countries (approximately 4.7 percent). This stark contrast
underlines the necessity for accessible healthcare. The placenta, as a vital organ
connecting the fetus to the mother, has discernable features such as meconium
staining, infections, and inflammation. These can serve as indicators of adverse
pregnancy outcomes, including preterm delivery, growth restriction, respiratory
or neuro-developmental conditions, and even neonatal deaths [9].

In a clinical context, these adverse outcomes are often signaled by morpho-
logical changes in the placenta, identifiable through pathological analysis [19].
Timely conducted placental pathology can reduce the risks of serious conse-
quences of pregnancy-related infections and distress, ultimately improving the
well-being of newborns and their families. Unfortunately, traditional placenta
pathology examination is resource-intensive, requiring specialized equipment and
expertise. It is also a time-consuming task, where a full exam can easily take sev-
eral days, limiting its widespread applications even in developed countries. To
overcome these challenges, researchers have been exploring the use of automatic
placenta analysis tools that rely on photographic images. By enabling broader
and more timely placental analysis, these tools could help reduce infant fatalities
and improve the quality of life for families with newborns.
Related Work. Considerable progress has been made in segmenting [20, 17, 23]
and classifying [1, 13, 8, 15, 21, 26, 10] placenta images using histopathological,
ultrasound, or MRI data. However, these methods are dependent on expensive
and bulky equipment, restricting the accessibility of reproductive healthcare.
Only limited research has been conducted on the gross analysis of post-birth
placenta photographs, which have a lower equipment barrier. AI-PLAX [4] com-
bines handcrafted features and deep learning, and a more recent study [29] relies
on deep learning and domain adaptation. Unfortunately, both are constrained by
issues such as data scarcity and single modality, which hinder their robustness
and generalizability. To address these, Pan et al. [16] incorporated vision-and-
language contrastive learning (VLC) using pathology reports. However, their
method struggles with variable-length reports and is computationally demand-
ing, making it impractical for low-resource communities.

With growing research in vision-and-language and contrastive learning [28,
18], recent research has focused on improving the performance and efficiency of
VLC approaches. They propose new model architectures [24, 2], better visual
representation [7, 27], loss function design [14, 16], or sampling strategies [5, 12].
However, these methods are still not suitable for variable-length reports and are
inefficient in low-resource settings.
Our Contributions. We propose a novel framework for more accurate and
efficient computer-aided placenta analysis. Our framework introduces two key
enhancements: Pathology Report Feature Recomposition, a first in the med-
ical VLC domain that captures features from pathology reports of variable
lengths, and Distributional Feature Recomposition, which provides a more ro-
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bust, distribution-aware representation. We demonstrate that our approach im-
proves representational power and surpasses previous methods by a significant
performance margin, without additional data. Furthermore, we boost training
and testing efficiency by eliminating the large language model (LLM) from the
training process and incorporating more efficient encoders. To the best of our
knowledge, this is the first study to improve both the efficiency and performance
of VLC training techniques for placenta analysis.

2 Dataset

We use the exact dataset from Pan et al. [16] collected using a professional pho-
tography instrument in the pathology department of the Northwestern Memo-
rial Hospital (Chicago) from 2014 to 2018 and an iPad in 2021. There are three
parts of the dataset: 1) the pre-training dataset, containing 10,193 image-and-
text pairs; 2) the primary fine-tuning dataset, comprising 2,811 images labeled
for five tasks: meconium, fetal inflammatory response (FIR), maternal inflamma-
tory response (MIR), and histologic chorioamnionitis, and neonatal sepsis; and
3) the iPad evaluation dataset, consisting of 52 images from an iPad labeled for
MIR and clinical chorioamnionitis. As with the original study, we assess the ef-
fectiveness of our method on the primary dataset, while utilizing iPad images to
evaluate the robustness against distribution shifts. All images contain the fetal
side of a placenta, the cord, and a ruler for scale. The pre-training data is also
accompanied by a corresponding text sequence for the image containing a part
of the corresponding pathology report as shown in Fig. 1. A detailed breakdown
of the images is provided in the supplementary materials.

3 Method

This section aims to provide an introduction to the background, intuition, and
specifics of the proposed methods. An overview is given in Fig. 1.

3.1 Problem Formulation

Our tasks are to train an encoder to produce placenta features and a classifier to
classify them. Formally, we aim to learn a function fv using a learned function
fu, such that for any pair of input (xi, ti) and a similarity function sim, we have

sim(ui,vi) > sim(ui,vj), i ̸= j , (1)

where sim(u,v) represents the cosine similarity between the two feature vectors
u = fu(x), v = fv(t). The objective function for achieving inequality (1) is:

ℓ
(v→u)
i = − log

exp(sim(ui,vi)/τ)∑N

k=1
exp(sim(ui,vk)/τ)

, (2)

where τ is the temperature hyper-parameter and N is the mini-batch size.
To train a classifier, we aim to learn a function f c

t using the learned function
fv for each task t ∈ [1 : T ], such that for a pair of input (xi, l

t
i), f

c
t (f

v(xi)) = lti .
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Fig. 1. A diagram illustrating the difference between the proposed approach (left) and
the traditional VLC approach (right). x and t are images and text inputs, respectively.
One sample input image and text are shown on the left. The loss function is defined

as L = 1
N

∑N

i=1

(
λℓ̃

(u→v)
i + (1− λ)ℓ̃

(v→u)
i

)
, following the notations in Sec. 3.

3.2 Pathology Report Feature Recomposition

Traditional VLC approaches for medical image and text analysis, such as Con-
VIRT [28], encode the entire natural language medical report or electronic health
record (EHR) associated with each patient into a single vector representation
using a language model. However, solely relying on a pre-trained language model
presents two significant challenges. First, the encoding process can result in sup-
pression of important features in the report as the encoder is allowed to ignore
certain placental features to minimize loss, leading to a single dominant feature
influencing the objective (1), rather than the consideration of all relevant fea-
tures in the report. Second, the length of the pathology report may exceed the
capacity of the text encoder, causing truncation (e.g., a BERT [6] usually allows
512 sub-word tokens during training). Moreover, recent LLMs may handle text
length but not feature suppression. Our method seeks to address both challenges
simultaneously.

Our approach addresses the limitations of traditional VLC methods in the
medical domain by first decomposing the placenta pathology report into set T
of arbitrary size, where each ti ∈ T represents a distinct placental feature; the
individual items depicted in the pathology report in Fig. 1 correspond to dis-
tinct placental features. Since the order of items in a pathology report does not
impact its integrity, we obtain the set of vector representations of the features
V using an expert language model fv, where vi = fv(ti) for vi ∈ V. These
resulting vectors are weighted equally to recompose the global representation
(see Fig. 1), v̄ =

∑
v∈V v, which is subsequently used to calculate the cosine

similarity sim(u, v̄) with the image representation u. The recomposition of fea-
ture vectors from full medical text enables the use of pathology reports or EHRs
of any length and ensures that all placental features are captured and equally
weighted, thereby improving feature representation. Additionally, our approach
reduces computational resources by precomputing text features, eliminating the
need for an LLM in training. Moreover, it is adaptable to any language model.
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3.3 Distributional Feature Recomposition

Since our pathology reports are decomposed and encoded as a set of feature
vectors, to ensure an accurate representation, it is necessary to consider potential
limitations associated with vector operations. In the context of vector summa-
tion, we anticipate similar representations when two sets differ only slightly.
However, even minor changes in individual features within the set can signif-
icantly alter the overall representation. This is evident in the substantial dif-
ference between v̄1 and v̄2 in Fig.2, despite V1 and V2 differing by only one
vector magnitude. On the other hand, two distinct sets may result in the same
representation, as shown by v̄1 and v̄3 in Fig.2, even when the individual feature
vectors have drastically different meanings. Consequently, it is crucial to develop
a method that ensures sim(V1,V2) > sim(V1,V3).

𝒩(𝜇(V!), 𝜎(V!)) 𝒩(𝜇(V"), 𝜎(V")) 𝒩(𝜇(V#), 𝜎(V#))

v"!
v""

v"#

V! V" V#

Fig. 2. A diagram illustrating the idea of the proposed distributional feature recom-
position. v̄i denotes the point estimate sum of the placenta pathological text vectors
set Vi. N (µ(Vi), σ(Vi)) represents the distribution of the mean placental feature es-
timated from each Vi. The dark vectors represent the changing vectors from V1.

To address these limitations, we extend the feature recomposition in Sec. 3.2
to Distributional Feature Recomposition that estimates a stable high-dimensional
vector space defined by each set of features. We suggest utilizing the distribution
N (µ(V), σ(V)) of the feature vectors V, instead of point estimates (single vector
sum) as a more comprehensive representation, where µ(V) and σ(V) denote
the mean and standard deviation, respectively. As shown by the shaded area
in Fig. 2, the proposed distributional feature recomposition is more stable and
representative than the point estimate sum of vector: N (µ(V1), σ(V1)) is similar
to N (µ(V2), σ(V2)), but significantly different from N (µ(V3), σ(V3)).

Implementation-wise, we employ bootstrapping to estimate the distribution
of the mean vector. We assume that the vectors adhere to a normal distribution
with zero covariance between dimensions. During each training iteration, we ran-
domly generate a new bootstrapped sample set Ṽ from the estimated normal
distribution N (µ(V), σ(V)). Note that a slightly different sample set is gener-
ated in each training epoch to cover the variations in the feature distribution.
We can therefore represent this distribution by the vector ṽ =

∑
v∈Ṽ v, the sum

of the sampled vectors, which captures the mean feature distribution in its val-
ues and carries the feature variation through epochs. By leveraging a sufficient
amount of training data and running multiple epochs, we anticipate achieving
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a reliable estimation. The distributional feature recomposition not only inherits
the scalability and efficiency of the traditional sum of vector approach but also
provides a more robust estimate of the distribution of the mean vector, resulting
in improved representational power and better generalizability.

3.4 Efficient Neural Networks

Efficient models, which are smaller and faster neural networks, facilitate easy
deployment across a variety of devices, making them beneficial for low-resource
communities. EfficientNet [22] and MobileNetV3 [11] are two notable examples
of such networks. These models achieve comparable or better performance than
state-of-the-art ResNet on ImageNet. However, efficient models generally have
shallower network layers and can underperform when the features are more dif-
ficult to learn, particularly in medical applications [25]. To further demonstrate
the representation power of our proposed method and expedite the diagnosis pro-
cess, we experimentally substitute our image backbone with two efficient models,
EfficientNet-B0 and MobileNetV3-Large-1.0, both of which exhibit highly com-
petitive performance on ImageNet when compared to the original ResNet50.
This evaluation serves two purposes: First, to test the applicability of our pro-
posed method across different models, and second, to provide a more efficient
and accessible placenta analysis model.

4 Experiments

4.1 Implementation

We implemented the proposed methods and baselines using the Python/PyTorch
framework and deployed the system on a computing server. For input images,
we used PlacentaNet [3] for segmentation and applied random augmentations
such as random rotation and color jittering. We used a pre-trained BERT1[6]
as our text encoder. EfficientNet-B0 and MobileNetV3-Large-1.0 followed official
PyTorch implementations. All models and baselines were trained for 400 epochs.
The encoder in the last epoch was saved and evaluated on their task-specific
performance on the test set, measured by the AUC-ROC scores (area under the
ROC curve). To ensure the reliability of the results, each evaluation experiment
was repeated five times using different fine-tuning dataset random splits. The
same testing procedure was adopted for all our methods. We masked all iPad
images using the provided manual segmentation masks. For more information,
please refer to the supplementary material.

4.2 Results

We compare our proposed methods (Ours) with three strong baselines: a ResNet-
50 classification network, the ConVIRT [28] Medical VLC framework, and Pan

1 https://tfhub.dev/google/experts/bert/pubmed/2
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et al. The mean results and confidence intervals (CIs) reported for each of the ex-
periments on the two datasets are shown in Table. 1. Some qualitative examples
are in the supplementary material.

Table 1. AUC-ROC scores (in %) for placenta analysis tasks. The mean and 95% CI
of five random splits. The highest means are in bold and the second-highest means
are underlined. Primary stands for the main placenta dataset, and iPad stands for the
iPad dataset. (Mecon.: meconium; H.Chorio.: histologic chorioamnionitis; C.Chorio.:
clinical chorioamnionitis)

Method
Primary Task iPad Task

Mecon. FIR MIR H.Chorio. Sepsis MIR C.Chorio.

Supervised (ResNet-50) 77.0±2.9 74.2±3.3 68.5±3.4 67.4±2.7 88.4±2.0 50.8±21.6 47.0±16.7

ConVIRT (ResNet-50) 77.5±2.7 76.5±2.6 69.2±2.8 68.0±2.5 89.2±3.6 52.5±25.7 50.7±6.6

Pan et al. (ResNet-50) 79.4±1.3 77.4±3.4 70.3±4.0 68.9±5.0 89.8±2.8 61.9±14.4 53.6±4.2

Ours (ResNet-50) 81.3±2.3 81.3±3.0 75.0±1.6 72.3±2.6 92.0±0.9 74.9±5.0 59.9±4.5

Ours (EfficientNet) 79.7±1.5 78.5±3.9 71.5±2.6 67.8±2.8 87.7±4.1 58.7±13.3 61.2±4.6

Ours (MobileNet) 81.4±1.6 80.5±4.0 73.3±1.1 70.9±3.6 88.4±3.6 58.3±10.1 52.3±11.2

Our performance-optimized method with the ResNet backbone consistently
outperforms all other methods in all placental analysis tasks. These results con-
firm the effectiveness of our approach in reducing feature suppression and en-
hancing representational power. Moreover, compared to Pan et al., our method
generally has lower variation across different random splits, indicating that our
training method can improve the stability of learned representations. Further-
more, the qualitative examples provided in the supplementary material show
that incorrect predictions are often associated with incorrect salient locations.

Table 2. Training and inference efficiency metrics. All these measurements are per-
formed on a Tesla V100 GPU with a batch size of 32 at full precision (fp32). ResNet-50s
have the same inference efficiency and the number of parameters. (#params: num-
ber of parameters; Time: total training time in hours; throughput : examples/second;
TFLOPS : Tera FLoating-point Operations/second). Improvements are in green.

Method #params↓ Training Inference

Time↓ Throughput↑ TFLOPS↓
Pan et al. (ResNet-50) 27.7M 38 hrs - -

Ours (ResNet-50) 27.7M 20 hrs÷1.9 334 4.12

Ours (EfficientNet) 6.9M÷4.01 19 hrs÷2.0 822×2.46 0.40÷10.3

Ours (MobileNet) 7.1M÷3.90 18 hrs÷2.1 1368×4.10 0.22÷18.7
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Table. 2 shows the speed improvements of our method. Since the efficiency
of Pan et al. and ConVIRT is the same, we only present one of them for brevity.
By removing the LLM during training, our method reduces the training time
by a factor of 2.0. Moreover, the efficient version (e.g., MobileNet encoder) of
our method has 2.4 to 4.1 times the throughput of the original model while still
outperforming the traditional baseline approaches in most of the tasks, as shown
in Table. 1. These results further support the superiority of the proposed repre-
sentation and training method in terms of both training and testing efficiency.

4.3 Ablation

To better understand the improvements, we conduct a component-wise ablation
study. We use the ConVIRT method (instead of Pan et al.) as the starting point
to keep the loss function the same. We report the mean AUC-ROC across all
tasks to minimize the effects of randomness.

Table 3. Mean AUC-ROC scores over placenta analysis tasks on the primary dataset.
The mean and 95% CI of five random splits. +Recomposition means the use of Pathol-
ogy Report Feature Recomposition over the baseline, ∼+Distributional stands for the
further adoption of the Distributional Feature Recomposition. Improvements are in
green. The abbreviations follow Table. 1.

Mecon. FIR MIR H. Chorio. Sepsis Mean

Baseline (ConVIRT) 77.5±2.7 76.5±2.6 69.2±2.8 68.0±2.5 89.2±3.6 76.1

+ Recomposition 80.8±1.9 80.2±3.1 74.6±1.8 71.8±3.2 92.0±1.4 79.9+3.8

∼ + Distributional 81.3±2.3 81.3±3.0 75.0±1.6 72.3±2.6 92.0±0.9 80.4+4.3

As shown in Table. 3, the text feature recomposition resulted in a significant
improvement in performance since it treats all placental features equally to re-
duce the feature suppression problem. Moreover, applying distributional feature
recomposition further improved performance, indicating that using a distribu-
tion to represent a set produces a more robust representation than a simple
sum. Additionally, even the efficient version of our approach outperformed the
performance version that was trained using the traditional VLC method. These
improvements demonstrate the effectiveness of the proposed methods across dif-
ferent model architectures. However, we observed that the additional improve-
ment from the distributional method was relatively small compared to that from
the recomposition method. This may be due to the fact that the feature suppres-
sion problem is more prevalent than the misleading representation problem, or
that the improvements may not be linearly proportional to the effectiveness–it
may be more challenging to improve a better-performing model.
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5 Conclusions and Future Work

We presented a novel automatic placenta analysis framework that achieves im-
proved performance and efficiency. Additionally, our framework can accommo-
date architectures of different sizes, resulting in better-performing models that
are faster and smaller, thereby enabling a wider range of applications. The frame-
work demonstrated clear performance advantages over previous work without
requiring additional data, while significantly reducing the model size and com-
putational cost. These improvements have the potential to promote the clinical
deployment of automated placenta analysis, which is particularly beneficial for
resource-constrained communities.

Nonetheless, we acknowledge the large variance and performance drop when
evaluating the iPad images. Hence, further research is required to enhance the
model’s robustness, and a larger external validation dataset is essential. More-
over, the performance of the image encoder is heavily reliant on the pre-trained
language model, and our framework does not support online training of the
language model. We aim to address these limitations in our future work.
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Table 1. Hyper-parameters used for the pre-training models and the linear evaluation
logistic regression.

Hyper-parameters

Pre-training
Optmizer Stochastic Gradient Descent
Momentum 0.9
Learning Rate Schedule Warm Up & Cosine Decay
Initial Learning Rate 0.0125
Final Learning Rate 0
Warm-up Epochs 5
Weight Decay 4−5

Batch Size 32
Epochs 400
Random Rotate ±180
Random Brightness 0.2
Random Contrast 0.2
Random Saturation 0.05
Random Hue 0.05
Input Size 512× 384
Projection Output Size 768
λ/τ (Variable in the paper) 0.5/0.1

Linear Evaluation
Solver Stochastic Average Gradient Descent
C 3.16
Maximum Iteration 1000
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Table 2. Key software and hardware dependencies for implementation.

Software Version Hardware Configuration

Python 3.10.6 GPU NVIDIA Tesla V100-32GB SXM2
PyTorch 1.11.0 CPU Intel Xeon Gold 6248
NumPy 1.23.3 RAM 512GB

Table 3. An example random split of the fine-tuning dataset (negative/positive).
(Mecon.: meconium; H.Chorio.: histologic chorioamnionitis; C.Chorio.: clinical
chorioamnionitis)

Mecon. FIR MIR H. Chorio. Sepsis MIR (iPad) C. Chorio. (iPad)

Train 351/349 167/167 364/345 219/224 84/86 - -
Test 370/330 190/145 332/378 228/215 90/80 10/14 22/23

Total 721/679 357/312 696/723 447/439 174/166 10/14 22/23
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Fig. 1. Qualitative examples generated by the ResNet-50 model trained using our
method. The heatmaps represent the probability of predicting the ground truth label
on the activation from the last hidden layer of the model, with red indicating higher
probabilities. False positive and false negative examples show that the model considers
irrelevant areas of the images, such as the background, when making incorrect predic-
tions, despite that the background has been set to pure black.


